974 research outputs found

    Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics

    Get PDF
    Single-shot real-time characterization of optical waveforms with sub-picosecond resolution is essential for investigating various ultrafast optical dynamics. However, the finite temporal recording length of current techniques hinders comprehensive understanding of many intriguing ultrafast optical phenomena that evolve over a time scale much longer than their fine temporal details. Inspired by the space-time duality and by stitching of multiple microscopic images to achieve a larger field of view in the spatial domain, here a panoramic-reconstruction temporal imaging (PARTI) system is devised to scale up the temporal recording length without sacrificing the resolution. As a proof-of-concept demonstration, the PARTI system is applied to study the dynamic waveforms of slowly-evolved dissipative Kerr solitons in an ultrahigh-Q microresonator. Two 1.5-ns-long comprehensive evolution portraits are reconstructed with 740-fs resolution and dissipative Kerr soliton transition dynamics, in which a multiplet soliton state evolves into stable singlet soliton state, are depicted

    The Connections between QSO Absorption Systems and Galaxies: Low-Redshift Observations

    Full text link
    Quasar absorption lines have long been recognized to be a sensitive probe of the abundances, physical conditions, and kinematics of gas in a wide variety of environments including low-density intergalactic regions that probably cannot be studied by any other means. While some pre-Hubble Space Telescope (HST) observations indicated that Mg II absorption lines arise in gaseous galactic halos with a large covering factor, many early QSO absorber studies were hampered by a lack of information about the context of the absorbers and their connections with galaxies. By providing access to crucial ultraviolet resonance lines at low redshifts, deployment of HST and the Far Ultraviolet Spectroscopic Explorer enabled detailed studies of the relationships between QSO absorbers and galaxies. The advent of large surveys such as the Sloan Digital Sky Survey (SDSS) has also advanced the topic by greatly improving the size of absorber and galaxy samples. This paper briefly reviews some observational results on absorber-galaxy connections that have been obtained in the HST/SDSS era, including Mg II absorbers, the low-z Lyman alpha forest, Lyman limit and damped Lyman alpha absorbers, and O VI systems.Comment: Review paper presented at IAU Colloquium 199, Probing Galaxies through Quasar Absorption Lines, eds. P. R. Williams, C. Shu, and B. Menard. 19 pages, 10 figure

    Combating Unknown Bias with Effective Bias-Conflicting Scoring and Gradient Alignment

    Full text link
    Models notoriously suffer from dataset biases which are detrimental to robustness and generalization. The identify-emphasize paradigm shows a promising effect in dealing with unknown biases. However, we find that it is still plagued by two challenges: A, the quality of the identified bias-conflicting samples is far from satisfactory; B, the emphasizing strategies just yield suboptimal performance. In this work, for challenge A, we propose an effective bias-conflicting scoring method to boost the identification accuracy with two practical strategies -- peer-picking and epoch-ensemble. For challenge B, we point out that the gradient contribution statistics can be a reliable indicator to inspect whether the optimization is dominated by bias-aligned samples. Then, we propose gradient alignment, which employs gradient statistics to balance the contributions of the mined bias-aligned and bias-conflicting samples dynamically throughout the learning process, forcing models to leverage intrinsic features to make fair decisions. Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can alleviate the impact of unknown biases and achieve state-of-the-art performance

    Automatic fracture optimization for shale gas reservoirs based on gradient descent method and reservoir simulation

    Get PDF
          In shale gas reservoir development, determination of hydraulic fracture geometry for horizontal wells is a demanding yet challenging task. One type of approach for hydraulic fracture optimization is based on reservoir simulation. To improve optimization efficiency and accuracy, an automatic and robust procedure integrating the gradient descent method with gas reservoir simulation has been developed. Fractured reservoir models were constructed using the “Multiple INteracting Continua” method, whereby an in-house shale gas reservoir simulator was implemented to model multiple gas transport mechanisms including non-Darcy flow, gas desorption, Klinkenberg effect, and geomechanical effect. The optimization procedure was first validated against two ideal cases and then applied to two realistic cases to optimize fracture spacing, half-length, and dimensionless fracture conductivity. It showed that the optimization results depend on optimization objective, reservoir property, natural fractures, economics and termination criteria. This gradient descent assisted fracture optimization procedure can achieve significant computational reduction and high prediction accuracy for various shale gas reservoir cases.Cited as: Chen, J., Wang, L., Wang, C., Yao, B., Tian, Y., Wu, Y.-S. Automatic fracture optimization for shale gas reservoirs based on gradient descent method and reservoir simulation. Advances in Geo-Energy Research, 2021, 5(2): 191-201, doi: 10.46690/ager.2021.02.0

    Axigluon as Possible Explanation for ppˉttˉp\bar{p} \to t\bar{t} Forward-Backward Asymmetry

    Full text link
    A flavor-nonuniversal chiral color model is introduced. It is used for comparison to the recent data on pˉptˉt\bar{p} p \to \bar{t} t. We concluded that the data are consistent with interpretation as an axigluon exchange within 1σ\sigma and a unique rise and fall behavior is predicated with regard to the asymmetry AFBtA^t_{FB} as a function of ttˉt \bar{t} invariant mass, which can distinguish our model from others before one discovers the axigluon resonance. Further aspects of the model are discussed.Comment: reference update

    Cytidine-phosphate-guanosine oligodeoxynucleotides in combination with CD40 ligand decrease periodontal inflammation and alveolar bone loss in a TLR9-independent manner

    Get PDF
    Local administration of toll-like receptor 9 (TLR9), agonist cytidine-phosphate-guanosine oligodeoxynucleotide (CpG ODNs), and CD40 ligand (CD40L) can decrease ligature-induced periodontal inflammation and bone loss in wild type (WT) mouse. Objective: This study aimed to explore whether such effect is dependent on TLR9 signaling. Material and Methods: Purified spleen B cells isolated from WT C57BL/6J mice and TLR9 knockout (KO) mice were cultured for 48 hours under the following conditions: CD40L, CpG+CD40L, CpG at low, medium and high doses. We determined B cell numbers using a hemocytometer at 24 h and 48 h. Percentages of CD1dhiCD5+ B cells were detected by flow cytometry. Interleukin-10 (IL-10) mRNA expression and protein secretion were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and by ELISA, respectively. The silk ligature was tied around the maxillary second molars for 14 days, during which the CpG+CD40L mixture or PBS was injected into palatal gingiva on days 3, 6, and 9. Results: For both WT and TLR9 KO mice, CpG significantly induced B cell proliferation, increased IL-10 mRNA expression and protein secretion of IL-10 but reduced CD1dhiCD5+ B cells population; local injection of CpG+CD40L mixture significantly decreased alveolar bone loss and the number of TRAP-positive cells adjacent to the alveolar bone surface, and significantly increased the gingival mRNA expression of IL-10 and decreased RANKL and IFN-γ mRNA expression. Conclusions: These results indicated that CpG plus CD40L decreased periodontal inflammation and alveolar bone loss in a TLR9-independent manner in ligature-induced experimental periodontitis

    Spherically Symmetric Noncommutative Spacetime via Exotic Atomic Transitions

    Full text link
    In discussing non-commutative spacetime, the generally studied θ\theta-Poincare model is inconsistent with bound states. In this Letter, we develop the formalism and study the phenomenology of another model Bχn^\mathcal{B}_{\chi \hat{n}} by the twisted permutation algebra and extend the Pauli Exclusion Principle(PEP) into non-commutative spacetime. The model also implies time quantization and can avoid UV/IR mixing. Applying it to atomic systems, we show that the model with newly induced phase factors can cause exotic transitions consisting of three electrons in the 1S orbit of atoms. The transition rate is derived, and the upper bound of non-commutative parameter χ\chi is thus set by utilizing data from the low-energy and low-background experiments, where strongest constraint χ4.05×1030\chi\leq4.05\times10^{-30} eV1^{-1} at 90\% C.L. is given by XENONnT, with the time quanta Δt2.67×1045s\Delta t\sim 2.67\times 10^{-45} s, equivalent to twenty times smaller than the Planck time.Comment: 6 pages, 4 figure

    Comparison of outcomes between immediate implant-based and autologous reconstruction: 15-year, single-center experience in a propensity score-matched Chinese cohort

    Get PDF
    Objective: The number of immediate breast reconstruction (IBR) procedures has been increasing in China. This study aimed to investigate the oncological safety of IBR, and to compare the survival and surgical outcomes between implant-based and autologous reconstruction. Methods: Data from patients diagnosed with invasive breast cancer who underwent immediate total breast reconstruction between 2001 and 2016 were retrospectively reviewed. Long-term breast cancer-specific survival (BCSS), disease-free survival (DFS), and locoregional recurrence-free survival (LRFS) were evaluated. Patient satisfaction with the breast was compared between the implant-based and autologous groups. BCSS, DFS, and LRFS were compared between groups after propensity score matching (PSM). Results: A total of 784 IBR procedures were identified, of which 584 were performed on patients with invasive breast cancer (implant-based, n = 288; autologous, n = 296). With a median follow-up of 71.3 months, the 10-year estimates of BCSS, DFS, and LRFS were 88.9% [95% confidence interval (CI) (85.1%–93.0%)], 79.6% [95% CI (74.7%–84.8%)], and 94.0% [95% CI (90.3%–97.8%)], respectively. A total of 124 patients completed the Breast-Q questionnaire, and no statistically significant differences were noted between groups (P = 0.823). After PSM with 27 variables, no statistically significant differences in BCSS, DFS, and LRFS were found between the implant-based (n = 177) and autologous (n = 177) groups. Further stratification according to staging, histological grade, lymph node status, and lymph-venous invasion status revealed no significant survival differences between groups. Conclusions: Both immediate implant-based and autologous reconstruction were reasonable choices with similar long-term oncological outcomes and patient-reported satisfaction among patients with invasive breast cancer in China
    corecore